Normally during each 11 year solar cycle, the sun’s north and south pole will shift magnetic polarity (from positive to negative and visa-verse) whereby each pole remains opposite each other (one of them is ‘positive’ while the other is ‘negative’). The sun’s pole flip typically occurs around the time of the solar maximum, and had been predicted to happen during the approximate time of May, 2013.

The thing is, For the first time in the world, an international research team consisting mainly of researchers from the National Astronomical Observatory of Japan (NAOJ) and RIKEN (a large natural sciences research institute in Japan with approximately 3000 scientists) recently discovered the phenomenon of the polarity of the polar magnetic field in the solar polar region is reversing faster than expected…

The “Hinode” satellite (a Japan Aerospace Exploration Agency Solar mission with United States and United Kingdom collaboration) has been conducting polar observations, and it was discovered during observations conducted in January 2012 that the north polar magnetic field was dwindling close to almost zero, one year earlier than expected.

Not only that, but,

According to a June, 2012 updated press release, results show that the solar dynamo, which is a process generating magnetic fields within the Sun, is bringing about changes seen for the first time since the start of modern-style solar observation. There are signs that the large solar magnetic field has changed to a quadrupole structure.


What is a quadrupole structure?

Instead of the north and south pole having opposite magnetic polarities (positive and negative), the two poles develop the SAME polarity (in this instance, ‘positive’)!

What does or could this mean to us?

This has never happened before during modern day measurements, and we don’t know for sure. It is believed that the Sun has previously experienced these circumstances during the Maunder Minimum and Dalton Minimum, which are said to have been periods when the Earth’s climate was colder (much colder).

The Maunder Minimum is the name used for the period roughly spanning 1645 to 1715 when sunspots became exceedingly rare, as noted by solar observers of the time. The Maunder Minimum coincided with a period of lower-than-average global temperatures. The Maunder Minimum coincided with the middle — and coldest part — of the Little Ice Age, during which Europe and North America were subjected to bitterly cold winters.

The Dalton Minimum was a period of low solar activity, named after the English meteorologist John Dalton, lasting from about 1790 to 1830. The Dalton Minimum coincided with a period of lower-than-average global temperatures.

From the standpoint of modern survival, what should we take away from this information?

The key takeaway is that there will always be the unexpected circumstance, a phenomenon entirely out of our control. Some potentially very big… others not so big. While we cannot change it, we can learn to be better prepared to deal with or expect the unexpected. We can learn to depend less upon external systems and we can learn that our ‘normal’ may not always be ‘normal’. We really don’t know if a quadrupole sun will affect us for the worse. Will it change our climate in the years ahead? Will it change the way the earth interacts with the streaming solar energy field? I suppose we shall find out…

Source of information used in this article:


Appreciate topics of survival, emergency preparedness – or planning for disaster?
Read our current articles on Modern Survival Blog
twitter: MSurvivalBlog

Jump to Commentx