U.S. Nuclear Power Plants, safe distance?


FULL SIZE map of U.S. Nuclear Power Reactor Locations

Note: Potassium iodide tablets – a thyroid blocking medicine used in a nuclear emergency.
Potassium Iodide Tablets, 130 mg (14 Tablets)


Map of U.S. Nuclear Reactor Locations

Given the the nuclear reactor meltdown disaster in Fukushima Japan, and the local area Fallout contamination that is now entering the food chain and water systems there, I have constructed a location map of the current (and decommissioned) nuclear power reactors in the United States.

Without discussing For or Against nuclear power, it may be smarter and a better use of time to learn some lessons from what happened in Japan that led to the the Fukushima meltdown, and to consider the potential risk for those living in the U.S. near one of these reactors – should a worst-case-scenario occur.

The problem at Fukushima: All electrical power was lost to the plant (earthquake – tsunami – backup generators destroyed – battery backup dead). This led to a lack of cooling of fuel rods in the reactors, which then led to a meltdown situation.

The underlying issue was a complete lack of electrical power, power sufficient enough to run the powerful cooling pumps.

Note: A Geiger counter / nuclear radiation detector will be an important asset during a nuclear disaster.
RADEX RD1503+ with Dosimeter

5 Nuclear Radiation Detector Choices

Taking a simple look at the risks that may exist around any nuclear power plant, including the locations in the U.S. map above, the worst-case-scenario is always going to be one where the ‘issue’ leads to complete power failure. Without electricity, any one of these nuclear reactors will melt down, just like Fukushima, or worse.

We would like to think that a nuclear power plant is designed and constructed with the utmost highest regard for for safety.
However, I still cannot help but think of several ‘what if’ scenarios:

What if a ‘Carrington Event‘ solar flare were to occur, like what had happened in 1859. Astrophysicists know that it WILL happen again, it’s just a matter of when. If an extreme solar event like that were to take down the electrical power grid, and-or damage electronic systems from its EMP effects,  how long would it be before any, some, most, or all of these nuclear power plants would runaway to meltdown?

What if a true EMP weapon, or weapons, were to detonate and take down all electrical systems of a region, or wider, what then? Are the backup generators and their associated electrical control systems impervious to EMP-type effects for example? What about the control systems of the reactors themselves, are they EMP proof?

What if the New Madrid fault zone were to unleash a magnitude 9+ earthquake, which geologists agree is possible, then how would the nuclear plants avoid catastrophe at the reactors in northern Arkansas, eastern Missouri, or others nearby?

What if the San Andreas tears loose in California, how will Diablo Canyon and San Onofre handle it?

What if there is an unforeseen ‘physical’ attack on one of these reactors? What can the containment vessels withstand with regards to missiles of various strengths?

What if there is a cyber ‘virus’ attack along the lines of the Stuxnet computer virus that attacked the Iranian nuclear development facilities?

These simple questions led me to create a map of all U.S. nuclear reactors, both operational and decommissioned, so as to have a look where the danger zones ‘might’ be, should a worst-case-scenario occur.

It is difficult to answer the question, “How far away is a safe distance from a nuclear reactor?”, so I’ve created 100 mile radius zones (200 mile diameter) around each nuclear plant to provide some visual perspective. Yellow zones are around decommissioned plants.

Remember, it’s all about the wind direction too. The prevailing winds in the U.S. are typically from west to east while normally dipping down into the south-central U.S. before bending back up the east coast.


Modern Survival Blog is a Top Prepper Website

  1. David March 24, 2011 3:10 PM
  2. Aaa March 25, 2011 8:06 AM
  3. Anonymous March 25, 2011 10:45 AM
    • ken (Modern Survival Blog) March 25, 2011 11:02 AM
  4. Greg September 19, 2011 2:05 PM
    • Ken (M.S.B.) September 27, 2011 6:30 PM
    • bob November 14, 2012 4:13 AM
    • Anonymous September 25, 2015 8:25 AM
    • brando March 8, 2016 5:59 AM
  5. Otter September 28, 2011 3:18 AM
  6. nik7d October 1, 2011 10:29 PM
  7. nik7d October 1, 2011 10:32 PM
  8. Otter October 2, 2011 5:20 AM
  9. Bryan October 22, 2011 3:14 PM
  10. Bryan October 23, 2011 10:41 AM
    • Ken (MSB) October 23, 2011 11:00 AM
      • Bryan October 23, 2011 11:38 AM
        • Nate November 8, 2016 8:11 PM
  11. Bryan October 23, 2011 11:01 AM
    • Ken (MSB) October 23, 2011 11:12 AM
      • Bryan October 23, 2011 11:41 AM
      • Bryan October 23, 2011 12:34 PM
        • rob February 24, 2014 6:52 PM
    • Bryan October 23, 2011 6:37 PM
      • rob February 24, 2014 6:55 PM
  12. Bryan October 23, 2011 12:18 PM
  13. Bryan October 24, 2011 9:07 AM
  14. Bryan December 9, 2011 2:38 PM
    • Ken (MSB) December 9, 2011 3:05 PM
      • Bryan December 9, 2011 3:41 PM
  15. Gerard January 22, 2012 9:21 PM
    • Bryan April 28, 2012 12:36 AM
      • jk February 24, 2014 7:50 PM
    • Bryan April 28, 2012 12:53 AM
      • Bryan April 28, 2012 12:57 AM
  16. Anonymous January 23, 2012 7:22 PM
  17. Faith May 12, 2012 12:03 AM
  18. Texasgirl October 28, 2012 5:39 PM
  19. john March 9, 2013 4:09 PM
  20. GSLB March 13, 2013 9:40 PM
  21. Anon November 24, 2013 5:20 PM
  22. Anonymous September 25, 2015 8:13 AM
  23. Davis December 16, 2015 1:10 PM
  24. Davis December 16, 2015 1:22 PM
  25. Todd August 13, 2016 9:17 AM
  26. RickG September 8, 2016 3:55 PM
  27. Great for Bombs -- Not for Electric December 3, 2016 10:29 PM
Vote for MSB -Top Prepper Website

By commenting you are agreeing to our:
Policy & Terms of Use

For Off-Topic discussion:
Latest 'Weekly Preparedness' post

The most recent from ALL articles:

Leave a Reply