U.S. Nuclear Power Plants, safe distance?

united-states-nuclear-reactors-map

FULL SIZE map of U.S. Nuclear Power Reactor Locations

 
——————————-
Note: Potassium iodide tablets – a thyroid blocking medicine used in a nuclear emergency.
Potassium Iodide Tablets, 130 mg (14 Tablets)
——————————-

 

   

Map of U.S. Nuclear Reactor Locations

Given the the nuclear reactor meltdown disaster in Fukushima Japan, and the local area Fallout contamination that is now entering the food chain and water systems there, I have constructed a location map of the current (and decommissioned) nuclear power reactors in the United States.

Without discussing For or Against nuclear power, it may be smarter and a better use of time to learn some lessons from what happened in Japan that led to the the Fukushima meltdown, and to consider the potential risk for those living in the U.S. near one of these reactors – should a worst-case-scenario occur.

 
The problem at Fukushima: All electrical power was lost to the plant (earthquake – tsunami – backup generators destroyed – battery backup dead). This led to a lack of cooling of fuel rods in the reactors, which then led to a meltdown situation.

The underlying issue was a complete lack of electrical power, power sufficient enough to run the powerful cooling pumps.

Note: A Geiger counter / nuclear radiation detector will be an important asset during a nuclear disaster.
RADEX RD1503+ with Dosimeter

5 Nuclear Radiation Detector Choices

Taking a simple look at the risks that may exist around any nuclear power plant, including the locations in the U.S. map above, the worst-case-scenario is always going to be one where the ‘issue’ leads to complete power failure. Without electricity, any one of these nuclear reactors will melt down, just like Fukushima, or worse.

We would like to think that a nuclear power plant is designed and constructed with the utmost highest regard for for safety.
However, I still cannot help but think of several ‘what if’ scenarios:

What if a ‘Carrington Event‘ solar flare were to occur, like what had happened in 1859. Astrophysicists know that it WILL happen again, it’s just a matter of when. If an extreme solar event like that were to take down the electrical power grid, and-or damage electronic systems from its EMP effects,  how long would it be before any, some, most, or all of these nuclear power plants would runaway to meltdown?

What if a true EMP weapon, or weapons, were to detonate and take down all electrical systems of a region, or wider, what then? Are the backup generators and their associated electrical control systems impervious to EMP-type effects for example? What about the control systems of the reactors themselves, are they EMP proof?

What if the New Madrid fault zone were to unleash a magnitude 9+ earthquake, which geologists agree is possible, then how would the nuclear plants avoid catastrophe at the reactors in northern Arkansas, eastern Missouri, or others nearby?

What if the San Andreas tears loose in California, how will Diablo Canyon and San Onofre handle it?

What if there is an unforeseen ‘physical’ attack on one of these reactors? What can the containment vessels withstand with regards to missiles of various strengths?

What if there is a cyber ‘virus’ attack along the lines of the Stuxnet computer virus that attacked the Iranian nuclear development facilities?

 
These simple questions led me to create a map of all U.S. nuclear reactors, both operational and decommissioned, so as to have a look where the danger zones ‘might’ be, should a worst-case-scenario occur.

It is difficult to answer the question, “How far away is a safe distance from a nuclear reactor?”, so I’ve created 100 mile radius zones (200 mile diameter) around each nuclear plant to provide some visual perspective. Yellow zones are around decommissioned plants.

Remember, it’s all about the wind direction too. The prevailing winds in the U.S. are typically from west to east while normally dipping down into the south-central U.S. before bending back up the east coast.

Related Posts That You Might Like:



52 Comments

  1. David 03/24/2011
  2. Aaa 03/25/2011
  3. Anonymous 03/25/2011
    • ken (Modern Survival Blog) 03/25/2011
  4. Greg 09/19/2011
    • Ken (M.S.B.) 09/27/2011
    • bob 11/14/2012
    • Anonymous 09/25/2015
    • brando 03/08/2016
      • Deirdre 02/01/2018
        • Nailbanger 02/01/2018
  5. Otter 09/28/2011
  6. nik7d 10/01/2011
  7. nik7d 10/01/2011
  8. Otter 10/02/2011
  9. Bryan 10/22/2011
  10. Bryan 10/23/2011
    • Ken (MSB) 10/23/2011
      • Bryan 10/23/2011
        • Nate 11/08/2016
  11. Bryan 10/23/2011
    • Ken (MSB) 10/23/2011
      • Bryan 10/23/2011
      • Bryan 10/23/2011
        • rob 02/24/2014
    • Bryan 10/23/2011
      • rob 02/24/2014
      • Deirdre 02/01/2018
  12. Bryan 10/23/2011
  13. Bryan 10/24/2011
  14. Bryan 12/09/2011
    • Ken (MSB) 12/09/2011
      • Bryan 12/09/2011
    • Deirdre 02/01/2018
      • NRP 02/02/2018
  15. Gerard 01/22/2012
    • Bryan 04/28/2012
      • jk 02/24/2014
    • Bryan 04/28/2012
      • Bryan 04/28/2012
  16. Anonymous 01/23/2012
  17. Faith 05/12/2012
  18. Texasgirl 10/28/2012
  19. john 03/09/2013
  20. GSLB 03/13/2013
  21. Anon 11/24/2013
  22. Anonymous 09/25/2015
  23. Davis 12/16/2015
  24. Davis 12/16/2015
  25. Todd 08/13/2016
  26. RickG 09/08/2016
  27. Great for Bombs -- Not for Electric 12/03/2016
Vote for MSB - We are a Top Prepper Website

Read our Comment Policy
All Off-Topic Comments Belong (Here)
Recent Comments From All Articles (Here)

Leave a Reply